On the Bunge-Kalnay Position Operator for the Dirac Electron

J. L. HINDMARSH

Department of Applied Mathematics and Astronomy, University College, P.O. Box 78, Cardiff CF1 1XL.

Received: 25 January 1977

Abstract

A similarity is noted between a constant of the motion for the Dirac equation, with position operators as discussed by Bunge and Kalnay, and a constant of the motion discussed by Corben in connection with a nonrelativistic spinning particle.

The Dirac Hamiltonian, H, for a free particle of mass m is

$$H = c \mathbf{a} \cdot \mathbf{P} + \beta mc$$

where the components of **P** are the momentum operators and β and the components of α satisfy the usual anticommutation relations

$$\{\alpha_i, \alpha_k\} = 2\delta_{ik}I, \qquad \{\alpha_i, \beta\} = 0, \qquad \{\beta, \beta\} = 2I$$

Following Bunge and Kalnay (1969), who discuss the properties of the position operators X defined by

$$\mathbf{X} = \mathbf{Q} + (i\hbar/2mc)\beta\mathbf{\alpha}$$

where the components of Q are the canonical position operators satisfying the commutation relations

$$[P_i, Q_k] = -i\hbar\delta_{ik}I, \qquad [\alpha_i, Q_k] = 0, \qquad [\beta, Q_k] = 0$$

we consider the family of position operators $X^{(\lambda)}$ defined by

$$X^{(\lambda)} = Q + \lambda \beta \alpha$$

The corresponding velocity operators $V^{(\lambda)}$ and angular momentum operators $L^{(\lambda)}$ are defined by

$$\mathbf{V}^{(\lambda)} = \frac{i}{\hbar} [H, \mathbf{X}^{(\lambda)}], \qquad \mathbf{L}^{(\lambda)} = \mathbf{X}^{(\lambda)} \wedge \mathbf{P}$$

This journal is copyrighted by Plenum. Each article is available for \$7.50 from Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011.

HINDMARSH

We see that the angular momentum will be a constant of the motion if

 $\mathbf{V}^{(\lambda)} \wedge \mathbf{P} = \mathbf{0}$

a condition which may be described by saying that the velocity and the momentum are parallel. This condition will hold if λ takes the Bunge-Kalnay value of $i\hbar/2mc$. This is in fact the only value of λ for which the velocity operators commute with one another.

We now consider the Dirac Hamiltonian, H', for a particle in a magnetic field described by the vector potential **A** which satisfies the transversality condition that $\nabla \cdot \mathbf{A} = 0$. We take H' to be given by

$$H' = c \boldsymbol{\alpha} \cdot \left[\mathbf{P} - \frac{e}{c} \mathbf{A}(\mathbf{X}^{(\lambda)}) \right] + \beta m c^2$$

If we write $A(X^{(\lambda)}) = A(Q + \lambda \beta \alpha)$, expand the right-hand side as a Taylor series in λ , and ignore terms of order λ^2 , we obtain

$$H' = c \alpha \left[\mathbf{P} - \frac{e}{c} \mathbf{A}(\mathbf{Q}) \right] + \beta \left(mc^2 - \frac{2ie\lambda}{\hbar} \mathbf{S} \cdot \mathbf{B} \right)$$

where $2S_1 = i\hbar\alpha_3\alpha_2$ etc., and $\mathbf{B} = \nabla \wedge \mathbf{A}$. Then

$$H'^{2} = c^{2} \left[\mathbf{P} - \frac{e}{c} \mathbf{A}(\mathbf{Q}) \right]^{2} - 2ce \,\mathbf{S} \cdot \mathbf{B} + m^{2}c^{4} - 4mc^{2} \frac{ie\lambda}{\hbar} \,\mathbf{S} \cdot \mathbf{B}$$

where a term of order λ^2 has again been ignored. Now if λ takes the Bunge-Kalnay value we obtain

$$H^{\prime 2} = c^2 \left[\mathbf{P} - \frac{e}{c} \mathbf{A}(\mathbf{Q}) \right]^2 + m^2 c^4$$

We also note that for this value of λ we retain the result that the velocity is parallel to the momentum provided that we ignore terms of order λ^2 .

Thus we obtain the result that when the velocity is parallel to the momentum $[\mathbf{P} - (e/c)\mathbf{A}(\mathbf{Q})]^2$ is a constant of the motion for the Hamiltonian H'. More importantly it is a constant of the motion that does not contain the operators **S**, which are of course related to the spin of the particle. In this respect the result compares with a result due to Corben (1968), which asserts that where $\boldsymbol{\pi}$ is the mechanical momentum of a nonrelativistic particle moving in a constant magnetic field $\mathbf{B}, \boldsymbol{\pi}^2$ is a constant of the motion provided that two of the three vectors $\mathbf{V}, \boldsymbol{\pi}$, and **B** are parallel. If, on the other hand, no two of the three vectors $\mathbf{V}, \boldsymbol{\pi}$, and **B** are parallel then $\pi^2 - 2(e/c)\mathbf{S} \cdot \mathbf{B}$ is a constant of the motion. The similarity does not lie in any claim that $\mathbf{P} - (e/c)\mathbf{A}(\mathbf{Q})$ is the mechanical momentum, since the natural expression for the mechanical momentum is $\mathbf{P} - (e/c)\mathbf{A}(\mathbf{X}^{(\lambda)})$, but rather in the fact that when the velocity is parallel to the momentum the constants of the motion do not involve the operators **S**.

444

References

Bunge, M. and Kalnay, A. J. (1969). Progress of Theoretical Physics, 42, 1445. Corben, H. C. (1968). Classical and Quantum Theories of Spinning Particles, Holden-Day, Inc.